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Abstract This paper investigates a difficult scheduling
problem on a specialized two-stage hybrid flow shop with
multiple processors that appears in semiconductor manufac-
turing industry, where the first and second stages process
serial jobs and parallel batches, respectively. The objective
is to seek job-machine, job-batch, and batch-machine assign-
ments such that makespan is minimized, while considering
parallel batch, release time, and machine eligibility con-
straints. We first propose a mixed integer programming (MIP)
formulation for this problem, then gives a heuristic approach
for solving larger problems. In order to handle real world
large-scale scheduling problems, we propose an efficient dis-
patching rule called BFIFO that assigns jobs or batches to
machines based on first-in-first-out principle, and then give
several reoptimization techniques using MIP and local search
heuristics involving interchange, translocation and transposi-
tion among assigned jobs. Computational experiments indi-
cate our proposed re-optimization techniques are efficient.
In particular, our approaches can produce good solutions for
scheduling up to 160 jobs on 40 machines at both stages
within 10 min.
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Introductions

Over the decades, semiconductor manufacturing has become
the most capital and labor intensive industry in Taiwan.
Besides investigating new manufacturing technologies to
boost the productivity, the semiconductor manufacturers also
make much effort in promoting their quality of services by
improving the production quality and shortening the pro-
duction time to maintain their competitive edge. Since the
equipments for processing wafer is extremely expensive, how
to maximize the productivity and utilization of equipments
within shorter time become critical issues in semiconductor
manufacturing industries. To this end, different techniques
such as seeking the optimal lot sizes, Work-In-Process lev-
els, shop floor control, and production scheduling have been
widely investigated.

The process of wafer manufacturing is a FSMP (Flow
shop with multiple processors) problem, in which the prod-
ucts must go through specific procedures, and pass through
the processors in specific orders. Note that jobs could fol-
low very different routing in the production systems due to
the re-entrant characteristic of semiconductor manufactur-
ing, which makes the flow-shop assumption restrictive in
semiconductor manufacturing. Different products may go
through the processors in the same order but are processed
by different recipes. To speed up the manufacturing process,
machines that can process batch jobs are widely used. In par-
ticular, a batch process may handle two or more jobs of the
same recipes at the same time, but jobs of different recipes
can not be put into the same batch. The batch job process has
become a common practice in semiconductor manufacturing
industry. Note that we assume zero setup time for changing
recipes, since in some manufacturing process different recipe
simply refers to different length of time for some chemical
processing. Take the wet etching process for example; jobs
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of different recipes go through the same etching process but
with different lengths of processing time.

Although the introduction of batch process aims to save
more processing time, a poor job-machine dispatching rule
may force some early jobs to wait for too long and incur
longer machine idle time. Such a job-batch and batch-
machine scheduling problem becomes even more compli-
cated, when we take the job-machine scheduling decisions
of previous stage (e.g. the photoresist stripping process) into
consideration.

The scheduling for FSMP is a common and complex prob-
lem in semiconductor and electronic manufacturing industry.
This paper investigates a specialized two-stage hybrid FSMP
problem of M machines in each stage that process N jobs,
each with a given release time. This problem appears very
often in semiconductor manufacturing industry. In practice,
greedy dispatching rules are commonly used to generate a
quick scheduling without any performance guarantee. Here
we first give a mixed integer programming (MIP) formulation
for this problem to calculate a theoretical optimal schedul-
ing. Unfortunately, our MIP formulation can only deal with
problems of very small scales (e.g. M = 2, N = 8) within a
tolerant time interval (e.g. 10 min). Such a poor performance
is surely unacceptable, especially in semiconductor manufac-
turing whose daily production planning is often dynamically
altered.

To the best of our knowledge, none of previous litera-
tures considers parallel batch, release time, and machine eli-
gibility at the same time, to deal with FSMP. Li and Lee
(1997) schedule the semiconductor bum-in operations on
ovens that can process batch jobs. Assuming the job release
times and due dates are agreeable, they show the problem is
strongly NP-hard for specific objective functions. Potts and
Kovalyov (2000) give comprehensive review on the literature
of scheduling with batching and propose efficient dynamic
programming algorithms for solving these types of problems.
Mathirajan and Sivakumar (2006) review papers that sched-
ule batch processors in semiconductor manufacturing and
propose schemes to classify scheduling problems. They also
carry out a simple meta-analysis to understand the develop-
ment and evolution of research in this topic, which helps to
identify potential research areas.

Dobson and Nambimadom (2001) proposes an MIP model
for 1 | B j |Cmax scheduling problems, and shows its com-
plexity to be NP-hard; Hung (1998) proposes a dynamic
programming approach to the Pm|B j |Lmax scheduling prob-
lem. Among the literatures using dispatching rules and heu-
ristic approaches, Centeno and Armacost (2004) compare
the longest processing time first rule (LPT), the least flexi-
ble job first rule (LFJ), the least flexible machine first rule
(LFM) and their combination, finding that LPT has the best
results. Malve and Uzsoy (2007) propose a genetic algo-
rithm (GA) for Pm|B j |Cmax problems. Kashan et al. (2008)

solve Pm|B j |Cmax problems by integrating GA with some
heuristic approach. Bellanger and Oulamara (2009) propose
three heuristic approaches to solve p-batch(II)|Cmax prob-
lems. In this paper, we focus on the scheduling problem of
FH2B(m1,m2)|p-batch(II), M j , r j |Cmax.

As for literatures that solve FSMP by dispatching rules,
Hunsucker and Shah (1994) simulate and construct an FSMP
environment, and compare six dispatching rules. Uzsoy et al.
(1992) test and compare eight dispatching rules for sched-
uling problems in semiconductor manufacturing. Grangeon
et al. (1999) construct an objected oriented FSMP simula-
tion model, and compare the performance of four dispatching
rules in thirteen scenarios. Petroni and Rizzi (2002) evalu-
ate the performance of five dispatching rules for solving an
FSMP based on fuzzy theories Kuo et al. (2007) simulate
Metamodel by neural network to simplify the complexity of
the simulation model.

In order to deal with the quality disadvantages of tradi-
tional dispatching rules and overcome the efficiency diffi-
culties of MIP formulation, we propose several heuristics. In
particular, we first give a technique to reduce the size of the
original MIP formulation for the special case where all the
jobs have zero release time, so that the reduced formulation,
named MIPH, can solve larger scheduling problems within
the tolerant time interval. To deal with much larger sched-
uling problems, we give an efficient dispatching rule called
BFIFO that assigns jobs or batches to machines based on
First-In-First-Out (FIFO) principle. To further improve the
solution quality of BFIFO, we propose and test two mech-
anisms by: (1) integrating BFIFO and MIPH, and (2) inte-
grating BFIFO and reoptimization heuristics based on local
search techniques that involve translocation, interchange and
transposition (TIT) among assigned jobs.

The rest of the paper is organized as follows: sect. “Prob-
lem definition and mathematical modeling” illustrates our
MIP model as well as a heuristic to obtain a reduced MIP
model called MIPH. Section “Heuristics based on dispatch-
ing rules and local search techniques” describes our BFIFO
dispatching rule, and explain how the integration of BFIFO
to MIPH and the TIT local search heuristics work; the results
of computational experiments on different solution methods
are listed in sect. “Computational experiments and analy-
ses”. Section “Conclusions” concludes this paper and sug-
gests topics for future research.

Problem definition and mathematical modeling

Problem definition

Most of the semiconductor manufacturing processes are con-
ducted either in serial jobs or in batch jobs. If a job contains
25 wafers, a serial process will manufacture the wafers one
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Fig. 1 An illustration of our two-stage hybrid flow shops

by one till all of them are done, and then proceed to the next
machine. On the other hand, a batch process can manufacture
two to six jobs of the same recipe at the same time. (In this
paper, the machines at the second stage can manufacture two
jobs simultaneously.) Manufacturing by batches does shorten
the completion time of jobs. However, when all the jobs have
different release time, whether to save some processing time
by waiting for another job of the same recipe to be processed
in batches, or to save some idle time by processing a single
job right away for a machine that can process batched jobs
becomes a very complicated and difficult decision to make.

As shown in Fig. 1, there are N jobs that will undergo two
stages of machines. The machines of the first stage conduct
serial jobs, where each machine processes at most one job at
a time. The machines of the second stage conduct batch jobs,
where each machine can process at most two jobs of the same
recipe simultaneously. Each job i with release time ri and due
date di that requires recipe j has to be assigned to a machine
m ∈ Mi in the first stage, and then be put in a batch k to a
machine m′ ∈ M ′

j in the second stage. These jobs should not
stay in stage 2 for duration longer than Qi . Our objective is
to decide the best job-machine (which position for placing a
job in which machine), job-batch (which job to which batch),
and batch-machine (which batch position in which machine)
assignments for each job, so that the makespan is minimized,
and the workload (defined as the total processing time) for
each machine is as balanced as possible.

A mixed integer programming model

Here we construct an MIP model for scheduling the two-
stage FSMP problems. The notations of our model are listed
below.

Indices, object sets, and parameters used in the model:

i : index of job, i = 1, . . . , N
m: index of machine at the first stage, m = 1, . . . , M

m′: index of machine at the second stage,
m′ = 1, . . . , M

p: index of position to place a job on a machine
k: index of batch, k = 1, . . . , K , where K ≤ N
j : index of recipe
Im : set of jobs that can be processed on machine m
M ji : set of machines capable of processing job i at

the first stage
M ′

j : set of machines capable of processing recipe j
at the second stage

I j : set of jobs that require recipe j
I k : set of jobs that can be included in batch k
B j : set of batches that require recipe j
Bi : set of batches that can include job i
Pi,m : processing time of job i on machine m
P ′

k,m′ : processing time of batch k on machine m′
ti,m : transportation time for job i to machine m
t ′i,m : transportation time for job i to machine m′
ri : release time of job i at the first stage
di : due date of job i at the first stage
MTm : available time for machine m
MT ′

m′ : available time for machine m′
Qi : the maximum waiting time of job i at the

second stage
L: a very large number to represent infinity

Decision variables in the model:

Xi,m,p = 1 if job i is assigned to position p on
machine m; 0 otherwise

Yi,k = 1 if job i is in batch k; 0 otherwise
Y ′

k,m′,p = 1 if batch k is assigned to position p on
machine m′; 0 otherwise

Zi,k,m′,p = 1 if job i is in batch k which is assigned to
position p on machine m’; 0 otherwise

Sm,p: starting time of position p on machine m
Cm,p: finishing time of position p on machine m
S′

m′,p: starting time of position p on machine m′
C ′

m′,p : finishing time of position p on machine
m′

r ′
i : the arrival time of job i at the second stage

d ′
i : the due date of job i at the second stage

Cmax : makespan

Objective:

Minimize Cmax (MIP)

Constraints:
∑

m∈Mi

∑

p

Xi,m,p = 1 ∀i (1)
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∑

i∈Im

Xi,m,p ≤ 1 ∀m, p (2)

∑

i∈Im

Xi,m,p ≥
∑

i∈Im

Xi,m,p+1 ∀m, p (3)

Sm,p +
∑

i∈Im

pi,m Xi,m,p ≤ Cm,p ∀m, p (4)

Cm,p ≤ Sm,p+1 ∀m, p (5)

MTm ≤ Sm,1 ∀m (6)

L · Xi,m,p + ri + ti,m − Sm,p ≤ L ∀i, m, p (7)

L · Xi,m,p − di + Cm,p ≤ L ∀i, m, p (8)

L · Xi,m,p − r ′
i + Cm,p = L ∀m, p (9)

r ′
i + Qi = d ′

i ∀i (10)
∑

k∈Bi

Yi,k = 1 ∀i (11)

∑

i∈I k

Yi,k ≤ 2 ∀k (12)

∑

m′∈M ′
j

∑

p

Y ′
k,m′,p = 1 ∀k (13)

∑

k∈Bi

Y ′
k,m′,p ≤ 1 ∀m′, p (14)

∑

k∈Bi

Y ′
k,m′,p ≥

∑

k∈Bi

Y ′
k,m′,p+1 ∀m′, p (15)

Zi,k,m′,p ≥ Yi,k + Y ′
k,m′,p − 1 ∀k ∈ Bi , i, m′, p (16)

S′
m′,p′ +

∑

k∈Bi

p′
k,m′ Zi,k,m′,p ≤ C ′

m′,p ∀m′, p (17)

C ′
m′,p ≤ S′

m′,p+1 ∀m′, p (18)

MT ′
m′ ≤ S′

m′,1 ∀m′ (19)

L · Zi,k,m′,p + r ′
i + ti,m′ − S′

m′,p ≤ L ∀i, k, m′, p (20)

L · Zi,k,m′,p − d ′
i + C ′

m′,p ≤ L ∀i, k, m′, p (21)

Cmax ≥ C ′
m′,p ∀m′, p (22)

X, Y, Y ′, Z ∈ {0, 1}, all other variables are nonnegative real
numbers

This formulation contains N 2(N M +2M +1) binary vari-
ables, 2N (2M + 1) + 1 real variables and M(3N 3 + 4N 2 +
8N + 2) + 5N constrains. Constraints (1)–(9) defines job
assignments in stage 1, while constraints (10)–(22) defines
the job and batch assignments in stage 2. In particular, con-
straint (1) arranges a job in some position (i.e. an order in the
sequence of a job queue) on some machine; constraint (2)
defines that each position in a machine can only be assigned
at most one job; constraint (3) ensures jobs to be assigned
on consequent positions on a machine. In other words, if
position p on a machine m is empty, all of its latter positions
have to be empty; constraint (4) and (5) respectively define
the relations between the completion and starting times for

each position p and its latter position p + 1; constraint (6)
limits the starting time MTm for each machine m to be earlier
than its first assigned job (i.e. Sm,1); constraint (7) defines the
starting time to process job i in position p on machine m has
to be earlier than its release time plus its transportation time;
constraint (8) defines the completion time Cm,p for process-
ing job i in position p on machine m to be earlier than its due
date, and that completion time becomes its release time r ′

i in
stage 2 by constraint (9); the due date of job i in stage 2 is
defined by constraint (10); constraint (11) assigns a job in a
batch, while each batch contains at most two jobs of the same
recipe by constraint (12) and that batch has to be assigned by
constraint (13); constraint (14) defines that each position in
a machine of stage 2 can only be assigned at most one batch;
constraint (15) ensures batches to be assigned on consequent
positions on a machine. In other words, if position p on a
machine m′ is empty, all of its latter positions have to be
empty; constraint (16) defines the situation of assigning job i
to batch k in position p of machine m′ in stage 2; constraints
(17)–(21) are similar to constraints (4)–(8) of stage 1, from
the viewpoint of assigning batch k in position p on machine
m′ of stage 2; constraint (22) defines makespan Cmax.

Although this MIP model can calculate an exact optimal
schedule, it can only deal with problems of small size. For
example, within 10 min, optimal schedules can only be cal-
culated for a problem with size up to eight jobs on 2 machines
at each stage, and no feasible solutions can be calculated for
problems of more than 24 jobs on 6 machines at each stage.
Such inefficiency is mainly caused by the enormous branch-
and-bound iterations of solving MIP, which is exponential to
problem size. Therefore, by reducing the size of an MIP, one
can solves larger problems within shorter time.

A size-reduction heuristic

Here we propose a problem-reduction technique for MIP as
shown in Fig. 2, based on the following observations: (1)
machines capable of processing the same recipes are iden-
tical, (2) an optimal schedule usually averages the work-
load (defined as the sum of processing time) on identical
machines, (3) we assume the workload is high, which means
jobs are much more than machines and most machines should
be busy without having idle time (this is generally true in
semiconductor manufacturing industry), and (4) most of the
NM positions in stage 1 are empty in the formulation. Note
that the number of positions K is usually set to be N , the
number of jobs, for general scheduling problems. Such a set-
ting is too conservative since it considers putting all the jobs
in a single machine, which rarely takes place in practice.
In reality, each job is usually processable on more than one
machine, so that no machine will be idle as long as there
exists a waited job that it can process. In other words, if one
can give better (i.e. smaller) upper bound estimation for K ,
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Calculate weight wim for 
each job i to machine m

Calculate Wm, the sum of 
weighted work load, for 

each machine m

Pick a machine of the 
largest weight, and 

calculate its position 
upper bound K by 

rounding up its weight. 

any remaining 
machine?

DONE

No

Yes

remove this machine and 
all jobs that can only be 

processed by this 
machine from the list.

Fig. 2 Flow chart for our MIP size-reduction heuristics

the size of MIP can be reduced which in turn helps the MIP
to solve larger problems in shorter time. To this end, we ana-
lyze the case when all jobs have zero release time since K in
that case will have the largest possible value.

Constructing a bipartite graph G = (N , A) where the
node set N = NJ ∪ NM , and arc set A = {(i, m) : job i ∈
NJ , machine m ∈ Mi ⊆ NM }. In other words, for each
machine m capable of processing job i , we connect job i
to machine m by an arc (i, m) with weight wim = 1/|Mi |.
Then we calculate Wm = ∑

i∈Im
wim , select the machine

m∗ = arg max{Wm}, then set the upper bound for its position,
denoted by Km∗ , to be 
Wm∗�. We then remove node m∗ and
its adjacent arcs, and repeat the above procedures to calcu-
late Km for m = 1, . . . , M . Figure 2 illustrates the steps of
our MIP size-reduction heuristic. The intuition of this size-
reduction heuristic is based on workload balancing that is a
common practice in real-world semiconductor manufactur-
ing. By fairly distributing the jobs to the machines, we can
effectively reduce K to a more reasonable value, which in
turn helps to solve larger MIPS within shorter time.

The result of our computational experiments indicates this
heuristic does serve its purpose. For example, within 10 min,
it can calculate optimal schedules for cases with size up to
M = 4, N = 16 and give feasible schedules for the cases of
M = 10, N = 48, while the original MIP formulation can
only calculate optimal schedule for the case of M = 2, N =
8 and give feasible schedules for the case of M = 6, N = 24.
Nevertheless, such an improvement still could not solve some
large-scale real-world problems (e.g. M = 40, N = 160)

in semiconductor manufacturing industry. Hence, we further
propose several heuristic approaches in next section.

Heuristics based on dispatching rules and local search
techniques

To meet the real-world scheduling requirement in semicon-
ductor manufacturing industry, our goal is to schedule 160
jobs on 40 machines at each stage within 10 min so that its
makespan is as short as possible. Based on previous experi-
ences in solving MIPs, we have learned the following two
facts: (1) the mathematical programming approaches that
solve MIPs are usually very time-consuming, and (2) the
optimal first stage job-machine assignment based on MIP
may not help too much in shortening the makespan for the
second stage batch-machine assignment. This is because a
good stage 1 schedule and an optimal stage 1 schedule may
both give the same or similar stage 2 schedule, if the stage
2 scheduling is carefully handled. As a result, we propose
to first solve the stage 1 schedule by dispatching rules, and
then solve the stage 2 schedule either by MIP (see section
“Combination of BFIFO and MIP model”) or by local search
heuristics (see section “Combination of BFIFO and ITT”).

In particular, two dispatching rules: FIFO (First In First
Out) and BFIFO (Batch First In First Out) are proposed.
FIFO assigns position for a job according to its arrival time.
BFIFO uses FIFO in the first stage, and then groups two jobs
of the same recipe according to their arrival time in the second
stage. For example, to assign n′ jobs where n′ is an odd num-
ber, we will test two different grouping mechanisms: (1,2),
(3,4),…, (n′ − 2, n′ − 1), (n′), or (1), (2,3),…, (n′ − 1, n′),
and then pick the more efficient one. After assigning all jobs
to batches, we schedule these batch jobs based on the FIFO
rule. By this way, we can avoid long waiting time between
two assigned jobs. The BFIFO flow chart is shown in Fig. 3.

From the results of our computational experiments (see
section “Computational experiments and analyses”), BFIFO
performs better than FIFO. Therefore, we suggest to first use
the scheduling decision by BFIFO as a start, then we apply
the following two approaches to further improve the solu-
tions: (1) mixed integer programming model (MIP); and (2)
local search techniques based on Interchange, Translocation,
and Transposition (ITT) mechanisms.

Combination of BFIFO and MIP model

To overcome the disadvantages of conventional MIP models,
this approach search for a good solution by MIP in a reduced
solution space obtained by BFIFO. In particular, after dis-
patching the jobs and batches by BFIFO, we calculate a new
and better stage 2 schedule by an MIP model, based on the
BFIFO stage 1 schedule. The advantage of this technique is to
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Choose two jobs for 

dispatching

Resort the jobs by their 
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Choose unscheduled jobs 
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Search for 

Min{ Ckm | m=1...m}, 
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No

Yes

Fig. 3 Flow chart of BFIFO

use MIP to search for the optimal or better stage 2 schedules
in the reduced solution space defined by the BFIFO stage 1
schedule. The objective and constraints are as follows:

Objective:

Minimize Cmax (BFIFO + MIP)

Constraints:

r ′
k + Qk = d ′

k ∀k (23)
∑

m′∈M ′
j

∑

p

Y ′
k,m′,p = 1 ∀k (24)

∑

k∈Bi

Y ′
k,m′,p ≤ 1 ∀m′, p (25)

∑

k∈Bi

Y ′
k,m′,p ≥

∑

k∈Bi

Y ′
k,m′,p+1 ∀m′, p (26)

S′
m′,p′ +

∑

k∈Bi

p′
k,m′Y ′

k,m′,p ≤ C ′
m′,p ∀m′, p (27)

C ′
m′,p ≤ S′

m′,p+1 ∀m′, p (28)

MT ′
m′ ≤ S′

m′,1 ∀m′ (29)

L · Y ′
k,m′,p + r ′

i + ti,m′ − S′
m′,p ≤ L ∀i, k, m′, p (30)

L · Y ′
k,m′,p − d ′

i + C ′
m′,p ≤ L ∀i, k, m′, p (31)

Cmax ≥ C ′
m′,p ∀m′, p (32)

Y ′ ∈ {0, 1}, all other variables are nonnegative real

numbers

Since the stage 1 schedule is already determined by
BFIFO, we only need to calculate the optimal batch-machine
assignments in stage 2. Therefore the BFIFO+MIP model can
be viewed as a subproblem of the original MIP model and
share similar constraints. In particular, constraint (23) cor-
responds to constraint (10); constraints (24)–(26) are iden-
tical to constraints (13)–(15); and constraints (27)–(33) are
mapped from constraints (17)–(22).

This heuristic does help to boost the efficiency of MIP and
improve the effectiveness of BFIFO. In our testings, we find
that this heuristic may find optimal solutions for small scale
problems (16 or 32 jobs) within 10 min, but it still can not
deal with problems with size up to 96 jobs. We can have a
better solution than BFIFO for the cases with size up to 112
jobs, but still can not solve the problems containing more
than 160 jobs.

To further speed up the solution procedures, in next sec-
tion we try to conduct local search techniques which insert
or interchange jobs between or within machines whenever
the local search operations take to shorten the makespan.

Combination of BFIFO and ITT

Although BFIFO tends to assign a job to a machine in a
greedy fashion (e.g. a machine that requires shorter process-
ing time), it gives no guarantee in the solution quality. Nev-
ertheless, based on the current BFIFO scheduling decision,
local search techniques that conduct job insertions or inter-
changes within or between machines can help improve the
solution quality very efficiently. To this end, we propose three
solution improving mechanisms: Interchange, Translocation,
and Transposition, together denoted by ITT.

Interchange is to swap jobs on different machines as
shown in Fig. 4. Translocation is to pick a job from the
machine with the longest processing time, and then insert
the selected job to another machine. Here we test two trans-
location techniques: (1) inserting a job according to BFIFO
order (see Fig. 5), and (2) inserting a job to each possible
position (see Fig. 6). Obviously the solution given by the
second Translocation technique should be at least as good as

Fig. 4 Interchange mechanism
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Fig. 5 Translocation mechanism based on BFIFO order

Fig. 6 Translocation mechanism for all possible positions

Fig. 7 Transposition mechanism

the one by the first Translocation technique, but it takes much
more time. In our testings, the first Translocation technique
is much faster and very often it also gives the same solution
as the second Translocation technique.

Transposition is to swap jobs on the same machine as
shown in the Fig. 7. Conducting these mechanisms in differ-
ent orders may give different levels of improvement. In our
experience, iteratively conducting Interchange and Translo-
cation mechanisms until no further improvement and then
conduct the Transposition mechanism seems to be more
effective, and thus we use these settings as our default ITT
procedures.

Computational experiments and analyses

Our MIP formulations are solved by ILOG CPLEX 11.1.1.
All other heuristic algorithms (including BFIFO and ITT
mechanism) are written in C++. All the tests are conducted
on a personal computer with Intel(R) Pentium(R) D CPU
3.00 GHz and 1.5 GB RAM with the Windows XP operating
system.

We have tested seven solution methods to our problems:
MIP, MIPH, FIFO, BFIFO, BFIFO+MIP, BFIFO+MIPH
and BFIFO+ITT. In particular, MIP and MIPH respectively
represent the mixed integer programming models of full
and reduced size, as described in section “A mixed inte-
ger programming model” and “A size-reduction heuristic”;
BFIFO is the proposed dispatching rule considering batch
jobs, as introduced in section “Heuristics based on dispatch-
ing rules and local search techniques”; BFIFO+MIP and
BFIFO+MIPH, described in section “Combination of BFIFO
and MIP model”, are the integration of BFIFO with MIP and
MIPH, respectively; and BFIFO+ITT denotes the heuristic
in section “Combination of BFIFO and ITT” that iteratively
improves the solution of BFIFO by the ITT mechanism.

The parameters to setup our random test cases are gen-
erated based on the manufacturing data of a semiconductor
manufacturing company in Taiwan. In stage 1, the available
time of machines is a random number uniformly generated
from the interval [10, 20] (denoted by U(10,20) afterwards);
the job arrival time follows a distribution of U(0,62.5); the job
setup time on the machines follows a U(1,10) distribution;
and the processing time of machines has a U(20,30) distribu-
tion. In stage 2, the available time of machines has a U(20,40)
distribution; the job setup time on the machines follows a
U(1,10) distribution; the processing time has a U(30,40) dis-
tribution; and the number of jobs is approximately four time
of the number of machines.

We have tested twenty sets of problems in different scales.
Each test set is composed by 10 randomly generated test
data with different random parameters. The result of differ-
ent approaches are compared and illustrated by line charts,
as shown in Figs. 8, 9, 10, 11, 12 and 13.

The results indicate that MIPH can not solve cases of more
than 48 jobs within 10 min, so we use MIP and MIPH to test
the cases from 8 jobs to 48 jobs. Figure 8 shows that MIP and
MIPH are very time-consuming, although MIPH has better
efficiency and is capable of dealing with large cases. On the
other hand, all other heuristic approaches are much faster
than these two.

As to the quality of solutions by different solution meth-
ods, Fig. 9 shows that most heuristic approaches have better
and more stable solutions for the cases of 8–48 jobs, although
they are not guaranteed to be optimal. On the other hand,
although MIP and MIPH can find optimal solutions, they are
only suitable for small-scale problems and the quality of their

123



2278 J Intell Manuf (2012) 23:2271–2280

Fig. 8 Running time of seven solution methods

Fig. 9 Makespan of seven solution methods

feasible solutions drop down very fast as the number of jobs
increase, as shown in Fig. 10.

For solving large-scale problems, we can only rely on the
five heuristic approaches (i.e. FIFO, BFIFO, BFIFO+MIP,
BFIFO+MIPH, and BFIFO+ITT) to calculate solutions of
acceptable qualities. Figure 11 indicates that BFIFO+ITT
gives solutions of the best qualities among all the five heu-
ristic approaches.

Now we further compare and analyze the performance of
the three most efficient heuristic approaches: FIFO, BFIFO,
and BFIFO+ITT. Figure 13 indicates that ITT mechanism
does serve its purpose by effectively reducing the makespan
without sacrificing the efficiency (as shown in Fig. 12). In
particular, BFIFO+ITT usually gives the best solutions in all

Fig. 10 Running time of five heuristic approached

Fig. 11 Makespan of five heuristic approaches

Fig. 12 Running time of FIFO, BFIFO and BFIFO+ITT
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Fig. 13 Makespan of FIFO, BFIFO, and BFIFO+ITT

of our tests, and it improves the quality of BFIFO solutions
by 5–10% for cases of N = 160 and M = 40 within 3 s.

In summary, we have the following three observations
from our computational experiments: (1) all the mathemati-
cal programming based approaches are time-consuming, and
thus are only suitable for cases of small scale (e.g. up to 16
jobs on 4 machines at each stage); (2) among the two pro-
posed mathematical programming based approaches, MIPH
usually performs better than MIP in both efficiency and effec-
tiveness. However, in scheduling fewer than 16 jobs and when
the machines have very different processing time over the
same recipes, MIPH may give worse solutions than MIP since
the assumption of identical machines no longer holds which
makes the upper bound estimation of positions become inac-
curate and spoils the solution qualities of MIPH. For the cases
of 16–48 jobs, MIPH consistently beats MIP. Within 10 min,
MIPH can schedule up to 48 jobs on 12 machines at each
stage, while MIP can at most schedule 24 jobs on 6 machines
at each stage; and (3) among those five heuristic approaches,
BFIFO always give better solutions than the traditional FIFO.
By integrating MIP or MIPH with BFIFO, solutions better
than the one by BFIFO alone can be calculated for small scale
problems (less than 64 jobs). BFIFO+MIPH always beats
BFIFO+MIP for larger cases (e.g. more than 64 jobs). Over-
all, BFIFO+ITT, the heuristic that integrates the ITT mech-
anism to BFIFO, has the best performance that can solve all
the test problems within 3 min.

Conclusions

In order to deal with complex semiconductor manufacturing
processes that involve two stages of job-machine, job-batch,
and batch-machine assignments with release time and due
dates, this paper proposes several solution methods includ-

ing the conventional MIP models, effective dispatching rules
that take the batch jobs into consideration, and local search
mechanisms that insert and swap jobs to positions within or
between machines. Our MIP problem-reduction technique
(MIPH) is designed based on the common practices in real-
world semiconductor manufacturing industry that balance
workload among machines. Although MIPH is more efficient
and effective than the conventional MIP for most cases, it
still cannot deal with larger cases. Furthermore, we observe
that any solution method that involves MIP or MIPH will
still require much running time for larger cases, and thus we
conclude those MIP based approaches are not suitable for
some real-world two-stage scheduling problems that require
to assign 160 jobs to 40 machines at each stage within 10 min.
In other words, only FIFO, BFIFO, and BFIFO+ITT can meet
the real-world dynamic production planning requirements in
semiconductor manufacturing industry.

Our computational experiments indicate that BFIFO, the
heuristic considering batch job assignment with FIFO dis-
patching rule, consistently beats FIFO. When integrating
BFIFO with our proposed ITT local search mechanism, the
ITT heuristic can further effectively improve the quality and
robustness for a BFIFO solution within a very short time
interval (e.g. 3 min). As a result, we recommend the use of
BFIFO+ITT to solve difficult scheduling problems in real-
world semiconductor manufacturing. Although our proposed
heuristics aim to minimize the makespan, with minor modi-
fication it can also deal with other objectives. For example,
to minimize the tardiness caused by violation on the due date
requirements, one can first calculate a better initial schedul-
ing based on the earliest due date (EDD) rule. Then, in the
local search part, one just checks whether any interchange,
translocation, or transposition operation leads to less tardi-
ness.

For future research, we also suggest investigations on the
performance of our proposed techniques over other difficult
real-world scheduling problems. A more thorough numeri-
cal analysis on the performance comparison between other
sophisticated heuristics to our proposed methods would also
be interesting and useful.
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